Tổng chuổi số Pascal

From testwiki
Jump to navigation Jump to search

Thí dụ

(x+1)1= 1x+1
(x+1)2= 1x2+2x+1
(x+1)3= 1x3+3x2+3x+1
(x+1)4= 1x4+4x3+6x2+4x+1
(x+1)5= 1x5+5x4+10x3+10x2+5x+1

Tam giác Pascal

Tam giác Pascal cho biet so dang truoc bien so luy thua


                                     1     1
                                  1     2     1
                               1     3     3     1
                            1     4     6     4     1
                         1     5     10    10    5     1
                      1     6     15    20    15    6     1
                   1     7     21    35    35    21    7     1
                1     8     28    56    70    56    28    8     1
             1     9     36    84    126   126   84    36    9     1
          1     10    45    120   210   252   210   120   45    10    1
       1      11    55    165   330   462   462   330   165   55   11     1
(a+b)o=1
(a+b)1=a+b
(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2

Công thức tổng chuổi số Pascal

  • (x+y)n=r=0n(nr)xrynr
(x+y)n=(n0)x0yn+(n1)x1yn1+(n2)x2yn2++(nn2)xn2y2+(nn1)xn1y1+(nn)xny0
(x+y)n=yn+nxyn1+(n2)x2yn2++(nn2)xn2y2+nxn1y+xn

Với

(nr)=n!r!(nr)!