Tích phân hàm số toán Ln

From testwiki
Jump to navigation Jump to search
lncxdx=xlncxx
  • (lnx)2dx=x(lnx)22xlnx+2x
  • (lncx)ndx=x(lncx)nn(lncx)n1dx
  • dxlnx=ln|lnx|+lnx+i=2(lnx)iii!
  • dx(lnx)n=x(n1)(lnx)n1+1n1dx(lnx)n1n1)
  • xmlnxdx=xm+1(lnxm+11(m+1)2)m1)
  • xm(lnx)ndx=xm+1(lnx)nm+1nm+1xm(lnx)n1dxm1)
  • (lnx)ndxx=(lnx)n+1n+1n1)
  • lnxdxxm=lnx(m1)xm11(m1)2xm1m1)
  • (lnx)ndxxm=(lnx)n(m1)xm1+nm1(lnx)n1dxxmm1)
  • xmdx(lnx)n=xm+1(n1)(lnx)n1+m+1n1xmdx(lnx)n1n1)
  • dxxlnx=ln|lnx|
  • dxxnlnx=ln|lnx|+i=1(1)i(n1)i(lnx)iii!
  • dxx(lnx)n=1(n1)(lnx)n1n1)
  • sin(lnx)dx=x2(sin(lnx)cos(lnx))
  • cos(lnx)dx=x2(sin(lnx)+cos(lnx))