Tích phân bất định

From testwiki
Jump to navigation Jump to search

Tích phân bất định là một loại toán giải tích tìm tích phân của hàm số trong một miền không xác định . Phép toán tìm diện tích dưới hình hàm số

f(x)dx=limΔx0(f(x)+Δf(x)2)Δx=F(x)+C

Luật toán tích phân bất định

Quy luật Công thức Điều kiện
1 adx=ax
2 Homogeniety af(x)dx=af(x)dx
3 Associativity (f±g±h±)dx=fdx±gdx±hdx±
4 Integration by Parts abfgdx=[fg]ababgfdx
4 General Integration by Parts f(n)gdx=f(n1)gf(n2)g++(1)nfg(n)dx
5 f(ax)dx=1af(x)dx
6 Substitution Rule g{f(x)}dx=g(u)dxdudu=g(u)f(x)du u=f(x)
7 xndx=xn+1n+1 n1
8 1xdx=ln|x|
9 exdx=ex
10 axdx=axln|a| a1

Công thức toán tích phân bất định

Tích Phân Hàm Số Thường

  Integral Value Remarks
1 cdx cx+C
2 xndx xn+1n+1+C n1
3 1xdx ln|x|+C
4 1a2+x2dx 1aarctanxa+C
5 1a2x2dx arcsinxa+C
6 1a2x2dx arccosxa+C
7 1xx2a2dx 1aarcsec|x|a+C
8 lnxdx xlnxx+C
9 logbxdx xlogbxxlogbe+C
10 exdx ex+C
11 axdx axlna+C
12 sinxdx cosx+C
13 cosxdx sinx+C
14 tanxdx ln|cosx|+C
15 cotxdx ln|sinx|+C
16 secxdx ln|secx+tanx|+C
17 cscxdx ln|cscx+cotx|+C
18 sec2xdx tanx+C
19 csc2xdx cotx+C
20 secxtanxdx secx+C
21 cscxcotxdx cscx+C
22 sin2xdx 12(xsinxcosx)+C
23 cos2xdx 12(x+sinxcosx)+C
24 sinnxdx sinn1xcosxn+n1nsinn2xdx
25 cosnxdx cosn1xsinxn+n1ncosn2xdx
26 arctanxdx xarctanx12ln|1+x2|+C
27 sinhxdx coshx+C
28 coshxdx sinhx+C
29 tanhxdx ln|coshx|+C
30 cschxdx ln|tanhx2|+C
31 sechxdx arctan(sinhx)+C
32 cothxdx ln|sinhx|+C

Tích Phân Hàm Số Hyperboly

Dưới đây là danh sách tích phân với hàm hypebolic.

sinhcxdx=1ccoshcx
coshcxdx=1csinhcx
sinh2cxdx=14csinh2cxx2
cosh2cxdx=14csinh2cx+x2
sinhncxdx=1cnsinhn1cxcoshcxn1nsinhn2cxdxn>0)
hay: sinhncxdx=1c(n+1)sinhn+1cxcoshcxn+2n+1sinhn+2cxdxn<0n1)
coshncxdx=1cnsinhcxcoshn1cx+n1ncoshn2cxdxn>0)
hay: coshncxdx=1c(n+1)sinhcxcoshn+1cxn+2n+1coshn+2cxdxn<0n1)
dxsinhcx=1cln|tanhcx2|
hay: dxsinhcx=1cln|coshcx1sinhcx|
hay: dxsinhcx=1cln|sinhcxcoshcx+1|
hay: dxsinhcx=1cln|coshcx1coshcx+1|
dxcoshcx=2carctanecx
dxsinhncx=coshcxc(n1)sinhn1cxn2n1dxsinhn2cxn1)
dxcoshncx=sinhcxc(n1)coshn1cx+n2n1dxcoshn2cxn1)
coshncxsinhmcxdx=coshn1cxc(nm)sinhm1cx+n1nmcoshn2cxsinhmcxdxmn)
hay: coshncxsinhmcxdx=coshn+1cxc(m1)sinhm1cx+nm+2m1coshncxsinhm2cxdxm1)
hay: coshncxsinhmcxdx=coshn1cxc(m1)sinhm1cx+n1m1coshn2cxsinhm2cxdxm1)
sinhmcxcoshncxdx=sinhm1cxc(mn)coshn1cx+m1mnsinhm2cxcoshncxdxmn)
hay: sinhmcxcoshncxdx=sinhm+1cxc(n1)coshn1cx+mn+2n1sinhmcxcoshn2cxdxn1)
hay: sinhmcxcoshncxdx=sinhm1cxc(n1)coshn1cx+m1n1sinhm2cxcoshn2cxdxn1)
xsinhcxdx=1cxcoshcx1c2sinhcx
xcoshcxdx=1cxsinhcx1c2coshcx
tanhcxdx=1cln|coshcx|
cothcxdx=1cln|sinhcx|
tanhncxdx=1c(n1)tanhn1cx+tanhn2cxdxn1)
cothncxdx=1c(n1)cothn1cx+cothn2cxdxn1)
sinhbxsinhcxdx=1b2c2(bsinhcxcoshbxccoshcxsinhbx)b2c2)
coshbxcoshcxdx=1b2c2(bsinhbxcoshcxcsinhcxcoshbx)b2c2)
coshbxsinhcxdx=1b2c2(bsinhbxsinhcxccoshbxcoshcx)b2c2)
sinh(ax+b)sin(cx+d)dx=aa2+c2cosh(ax+b)sin(cx+d)ca2+c2sinh(ax+b)cos(cx+d)
sinh(ax+b)cos(cx+d)dx=aa2+c2cosh(ax+b)cos(cx+d)+ca2+c2sinh(ax+b)sin(cx+d)
cosh(ax+b)sin(cx+d)dx=aa2+c2sinh(ax+b)sin(cx+d)ca2+c2cosh(ax+b)cos(cx+d)
cosh(ax+b)cos(cx+d)dx=aa2+c2sinh(ax+b)cos(cx+d)+ca2+c2cosh(ax+b)sin(cx+d)

Tích Phân Hàm Số Hyperboly Ngược

Dưới đây là danh sách các tích phân với hàm hypebolic ngược.

arsinhxcdx=xarsinhxcx2+c2
arcoshxcdx=xarcoshxcx2c2
artanhxcdx=xartanhxc+c2ln|c2x2||x|<|c|)
arcothxcdx=xarcothxc+c2ln|x2c2||x|>|c|)
arsechxcdx=xarsechxccarctanxcxc+xxcx(0,c))
arcschxcdx=xarcschxc+clnx+x2+c2cx(0,c))

Tích phân hàm số Logarit

Dưới đây là danh sách tích phân với hàm lôgarít.

Chú ý: bài này quy ước x>0.

lncxdx=xlncxx
  • (lnx)2dx=x(lnx)22xlnx+2x
  • (lncx)ndx=x(lncx)nn(lncx)n1dx
  • dxlnx=ln|lnx|+lnx+i=2(lnx)iii!
  • dx(lnx)n=x(n1)(lnx)n1+1n1dx(lnx)n1n1)
  • xmlnxdx=xm+1(lnxm+11(m+1)2)m1)
  • xm(lnx)ndx=xm+1(lnx)nm+1nm+1xm(lnx)n1dxm1)
  • (lnx)ndxx=(lnx)n+1n+1n1)
  • lnxdxxm=lnx(m1)xm11(m1)2xm1m1)
  • (lnx)ndxxm=(lnx)n(m1)xm1+nm1(lnx)n1dxxmm1)
  • xmdx(lnx)n=xm+1(n1)(lnx)n1+m+1n1xmdx(lnx)n1n1)
  • dxxlnx=ln|lnx|
  • dxxnlnx=ln|lnx|+i=1(1)i(n1)i(lnx)iii!
  • dxx(lnx)n=1(n1)(lnx)n1n1)
  • sin(lnx)dx=x2(sin(lnx)cos(lnx))
  • cos(lnx)dx=x2(sin(lnx)+cos(lnx))

Tích phân hàm số mũ

Dưới đây là danh sách các tích phân với hàm mũ.

ecxdx=1cecx
acxdx=1clnaacxa>0, a1)
xecxdx=ecxc2(cx1)
x2ecxdx=ecx(x2c2xc2+2c3)
xnecxdx=1cxnecxncxn1ecxdx
ecxdxx=ln|x|+i=1(cx)iii!
ecxdxxn=1n1(ecxxn1+cecxxn1dx)n1)
ecxlnxdx=1cecxln|x|Ei(cx)
ecxsinbxdx=ecxc2+b2(csinbxbcosbx)
ecxcosbxdx=ecxc2+b2(ccosbx+bsinbx)
ecxsinnxdx=ecxsinn1xc2+n2(csinxncosx)+n(n1)c2+n2ecxsinn2xdx
ecxcosnxdx=ecxcosn1xc2+n2(ccosx+nsinx)+n(n1)c2+n2ecxcosn2xdx
xecx2dx=12cecx2
1σ2πe(xμ)2/2σ2dx=12σ(1+erfxμσ2)
ex2dx=ex2(j=0n1c2j1x2j+1)+(2n1)c2n2ex2x2ndx(n>0),
với c2j=135(2j1)2j+1=2j!j!22j+1 .
eax2dx=πa
0x2nex2/a2dx=π(2n)!n!(a2)2n+1

Tích phân hàm số lượng giác

Tích phân hàm số sine

sinaxdx=1acosax+C
sin2axdx=x214asin2ax+C=x212asinaxcosax+C
xsin2axdx=x24x4asin2ax18a2cos2ax+C
x2sin2axdx=x36(x24a18a3)sin2axx4a2cos2ax+C
sinb1xsinb2xdx=sin((b1b2)x)2(b1b2)sin((b1+b2)x)2(b1+b2)+C(for |b1||b2|)
sinnaxdx=sinn1axcosaxna+n1nsinn2axdx(for n>0)
dxsinax=1aln|tanax2|+C
dxsinnax=cosaxa(1n)sinn1ax+n2n1dxsinn2ax(for n>1)
xsinaxdx=sinaxa2xcosaxa+C
xnsinaxdx=xnacosax+naxn1cosaxdx(for n>0)
a2a2x2sin2nπxadx=a3(n2π26)24n2π2(for n=2,4,6...)
sinaxxdx=n=0(1)n(ax)2n+1(2n+1)(2n+1)!+C
sinaxxndx=sinax(n1)xn1+an1cosaxxn1dx
dx1±sinax=1atan(ax2π4)+C
xdx1+sinax=xatan(ax2π4)+2a2ln|cos(ax2π4)|+C
xdx1sinax=xacot(π4ax2)+2a2ln|sin(π4ax2)|+C
sinaxdx1±sinax=±x+1atan(π4ax2)+C
  • Tích phân bất định cosine
cosaxdx=1asinax+C
cosnaxdx=cosn1axsinaxna+n1ncosn2axdx(for n>0)
xcosaxdx=cosaxa2+xsinaxa+C
cos2axdx=x2+14asin2ax+C=x2+12asinaxcosax+C
x2cos2axdx=x36+(x24a18a3)sin2ax+x4a2cos2ax+C
xncosaxdx=xnsinaxanaxn1sinaxdx
cosaxxdx=ln|ax|+k=1(1)k(ax)2k2k(2k)!+C
cosaxxndx=cosax(n1)xn1an1sinaxxn1dx(for n1)
dxcosax=1aln|tan(ax2+π4)|+C
dxcosnax=sinaxa(n1)cosn1ax+n2n1dxcosn2ax(for n>1)
dx1+cosax=1atanax2+C
dx1cosax=1acotax2+C
xdx1+cosax=xatanax2+2a2ln|cosax2|+C
xdx1cosax=xacotax2+2a2ln|sinax2|+C
cosaxdx1+cosax=x1atanax2+C
cosaxdx1cosax=x1acotax2+C
cosa1xcosa2xdx=sin(a1a2)x2(a1a2)+sin(a1+a2)x2(a1+a2)+C(for |a1||a2|)
tanaxdx=1aln|cosax|+C=1aln|secax|+C
tannaxdx=1a(n1)tann1axtann2axdx(for n1)
dxqtanax+p=1p2+q2(px+qaln|qsinax+pcosax|)+C(for p2+q20)


dxtanax=1aln|sinax|+C
dxtanax+1=x2+12aln|sinax+cosax|+C
dxtanax1=x2+12aln|sinaxcosax|+C
tanaxdxtanax+1=x212aln|sinax+cosax|+C
tanaxdxtanax1=x2+12aln|sinaxcosax|+C
  • Tích phân bất địnhonly secant
secaxdx=1aln|secax+tanax|+C
secnaxdx=secn1axsinaxa(n1)+n2n1secn2axdx (for n1)
secnxdx=secn2xtanxn1+n2n1secn2xdx
dxsecx+1=xtanx2+C
cscaxdx=1aln|cscaxcotax|+C
csc2xdx=cotx+C
cscnaxdx=cscn1axcosaxa(n1)+n2n1cscn2axdx (for n1)
cotaxdx=1aln|sinax|+C
cotnaxdx=1a(n1)cotn1axcotn2axdx(for n1)
dx1+cotax=tanaxdxtanax+1
dx1cotax=tanaxdxtanax1
dxcosax±sinax=1a2ln|tan(ax2±π8)|+C
dx(cosax±sinax)2=12atan(axπ4)+C
dx(cosx+sinx)n=1n1(sinxcosx(cosx+sinx)n12(n2)dx(cosx+sinx)n2)
cosaxdxcosax+sinax=x2+12aln|sinax+cosax|+C
cosaxdxcosaxsinax=x212aln|sinaxcosax|+C
sinaxdxcosax+sinax=x212aln|sinax+cosax|+C
sinaxdxcosaxsinax=x212aln|sinaxcosax|+C
cosaxdxsinax(1+cosax)=14atan2ax2+12aln|tanax2|+C
cosaxdxsinax(1+cosax)=14acot2ax212aln|tanax2|+C
sinaxdxcosax(1+sinax)=14acot2(ax2+π4)+12aln|tan(ax2+π4)|+C
sinaxdxcosax(1sinax)=14atan2(ax2+π4)12aln|tan(ax2+π4)|+C
sinaxcosaxdx=12asin2ax+C
sina1xcosa2xdx=cos(a1+a2)x2(a1+a2)cos(a1a2)x2(a1a2)+C(for |a1||a2|)
sinnaxcosaxdx=1a(n+1)sinn+1ax+C(for n1)
sinaxcosnaxdx=1a(n+1)cosn+1ax+C(for n1)
sinnaxcosmaxdx=sinn1axcosm+1axa(n+m)+n1n+msinn2axcosmaxdx(for m,n>0)
also: sinnaxcosmaxdx=sinn+1axcosm1axa(n+m)+m1n+msinnaxcosm2axdx(for m,n>0)
dxsinaxcosax=1aln|tanax|+C
dxsinaxcosnax=1a(n1)cosn1ax+dxsinaxcosn2ax(for n1)
dxsinnaxcosax=1a(n1)sinn1ax+dxsinn2axcosax(for n1)
sinaxdxcosnax=1a(n1)cosn1ax+C(for n1)
sin2axdxcosax=1asinax+1aln|tan(π4+ax2)|+C
sin2axdxcosnax=sinaxa(n1)cosn1ax1n1dxcosn2ax(for n1)
sinnaxdxcosax=sinn1axa(n1)+sinn2axdxcosax(for n1)
sinnaxdxcosmax=sinn+1axa(m1)cosm1axnm+2m1sinnaxdxcosm2ax(for m1)
also: sinnaxdxcosmax=sinn1axa(nm)cosm1ax+n1nmsinn2axdxcosmax(for mn)
also: sinnaxdxcosmax=sinn1axa(m1)cosm1axn1m1sinn2axdxcosm2ax(for m1)
cosaxdxsinnax=1a(n1)sinn1ax+C(for n1)
cos2axdxsinax=1a(cosax+ln|tanax2|)+C
cos2axdxsinnax=1n1(cosaxasinn1ax)+dxsinn2ax)(for n1)
cosnaxdxsinmax=cosn+1axa(m1)sinm1axnm2m1cosnaxdxsinm2ax(for m1)
also: cosnaxdxsinmax=cosn1axa(nm)sinm1ax+n1nmcosn2axdxsinmax(for mn)
also: cosnaxdxsinmax=cosn1axa(m1)sinm1axn1m1cosn2axdxsinm2ax(for m1)
sinaxtanaxdx=1a(ln|secax+tanax|sinax)+C
tannaxdxsin2ax=1a(n1)tann1(ax)+C(for n1)
tannaxdxcos2ax=1a(n+1)tann+1ax+C(for n1)
cotnaxdxsin2ax=1a(n+1)cotn+1ax+C(for n1)
cotnaxdxcos2ax=1a(1n)tan1nax+C(for n1)
  • Tích phân bất định
ccsinxdx=0
cccosxdx=20ccosxdx=2c0cosxdx=2sinc
cctanxdx=0
a2a2x2cos2nπxadx=a3(n2π26)24n2π2(for n=1,3,5...)

Tích phân hàm lượng giác ngược

Dưới đây là danh sách các tích phân với hàm lượng giác ngược.

arcsinxcdx=xarcsinxc+c2x2
xarcsinxcdx=(x22c24)arcsinxc+x4c2x2
x2arcsinxcdx=x33arcsinxc+x2+2c29c2x2
xnsin1xdx=1n+1(xn+1sin1x
+xn1x2nxn1sin1xn1+nxn2sin1xdx)
arccosxcdx=xarccosxcc2x2
xarccosxcdx=(x22c24)arccosxcx4c2x2
x2arccosxcdx=x33arccosxcx2+2c29c2x2
arctanxcdx=xarctanxcc2ln(c2+x2)
xarctanxcdx=c2+x22arctanxccx2
x2arctanxcdx=x33arctanxccx26+c36lnc2+x2
xnarctanxcdx=xn+1n+1arctanxccn+1xn+1dxc2+x2n1)
arcsecxcdx=xarcsecxc+xc|x|ln|x±x21|
xarcsecxdx=12(x2arcsecxx21)
xnarcsecxdx=1n+1(xn+1arcsecx1n(xn1x21
+(1n)(xn1arcsecx+(1n)xn2arcsecxdx)))
arccotxcdx=xarccotxc+c2ln(c2+x2)
xarccotxcdx=c2+x22arccotxc+cx2
x2arccotxcdx=x33arccotxc+cx26c36ln(c2+x2)
xnarccotxcdx=xn+1n+1arccotxc+cn+1xn+1dxc2+x2n1)