Tích phân bất định

From testwiki
Revision as of 22:54, 21 February 2025 by 76.9.200.130 (talk)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Tích phân bất định là một loại toán giải tích tìm tích phân của hàm số trong một miền không xác định . Phép toán tìm diện tích dưới hình hàm số

f(x)dx=limΔx0(f(x)+Δf(x)2)Δx=F(x)+C

Luật toán tích phân bất định

Quy luật Công thức Điều kiện
1 adx=ax
2 Homogeniety af(x)dx=af(x)dx
3 Associativity (f±g±h±)dx=fdx±gdx±hdx±
4 Integration by Parts abfgdx=[fg]ababgfdx
4 General Integration by Parts f(n)gdx=f(n1)gf(n2)g++(1)nfg(n)dx
5 f(ax)dx=1af(x)dx
6 Substitution Rule g{f(x)}dx=g(u)dxdudu=g(u)f(x)du u=f(x)
7 xndx=xn+1n+1 n1
8 1xdx=ln|x|
9 exdx=ex
10 axdx=axln|a| a1

Công thức toán tích phân bất định

Tích Phân Hàm Số Thường

  Integral Value Remarks
1 cdx cx+C
2 xndx xn+1n+1+C n1
3 1xdx ln|x|+C
4 1a2+x2dx 1aarctanxa+C
5 1a2x2dx arcsinxa+C
6 1a2x2dx arccosxa+C
7 1xx2a2dx 1aarcsec|x|a+C
8 lnxdx xlnxx+C
9 logbxdx xlogbxxlogbe+C
10 exdx ex+C
11 axdx axlna+C
12 sinxdx cosx+C
13 cosxdx sinx+C
14 tanxdx ln|cosx|+C
15 cotxdx ln|sinx|+C
16 secxdx ln|secx+tanx|+C
17 cscxdx ln|cscx+cotx|+C
18 sec2xdx tanx+C
19 csc2xdx cotx+C
20 secxtanxdx secx+C
21 cscxcotxdx cscx+C
22 sin2xdx 12(xsinxcosx)+C
23 cos2xdx 12(x+sinxcosx)+C
24 sinnxdx sinn1xcosxn+n1nsinn2xdx
25 cosnxdx cosn1xsinxn+n1ncosn2xdx
26 arctanxdx xarctanx12ln|1+x2|+C
27 sinhxdx coshx+C
28 coshxdx sinhx+C
29 tanhxdx ln|coshx|+C
30 cschxdx ln|tanhx2|+C
31 sechxdx arctan(sinhx)+C
32 cothxdx ln|sinhx|+C

Tích Phân Hàm Số Hyperboly

Dưới đây là danh sách tích phân với hàm hypebolic.

sinhcxdx=1ccoshcx
coshcxdx=1csinhcx
sinh2cxdx=14csinh2cxx2
cosh2cxdx=14csinh2cx+x2
sinhncxdx=1cnsinhn1cxcoshcxn1nsinhn2cxdxn>0)
hay: sinhncxdx=1c(n+1)sinhn+1cxcoshcxn+2n+1sinhn+2cxdxn<0n1)
coshncxdx=1cnsinhcxcoshn1cx+n1ncoshn2cxdxn>0)
hay: coshncxdx=1c(n+1)sinhcxcoshn+1cxn+2n+1coshn+2cxdxn<0n1)
dxsinhcx=1cln|tanhcx2|
hay: dxsinhcx=1cln|coshcx1sinhcx|
hay: dxsinhcx=1cln|sinhcxcoshcx+1|
hay: dxsinhcx=1cln|coshcx1coshcx+1|
dxcoshcx=2carctanecx
dxsinhncx=coshcxc(n1)sinhn1cxn2n1dxsinhn2cxn1)
dxcoshncx=sinhcxc(n1)coshn1cx+n2n1dxcoshn2cxn1)
coshncxsinhmcxdx=coshn1cxc(nm)sinhm1cx+n1nmcoshn2cxsinhmcxdxmn)
hay: coshncxsinhmcxdx=coshn+1cxc(m1)sinhm1cx+nm+2m1coshncxsinhm2cxdxm1)
hay: coshncxsinhmcxdx=coshn1cxc(m1)sinhm1cx+n1m1coshn2cxsinhm2cxdxm1)
sinhmcxcoshncxdx=sinhm1cxc(mn)coshn1cx+m1mnsinhm2cxcoshncxdxmn)
hay: sinhmcxcoshncxdx=sinhm+1cxc(n1)coshn1cx+mn+2n1sinhmcxcoshn2cxdxn1)
hay: sinhmcxcoshncxdx=sinhm1cxc(n1)coshn1cx+m1n1sinhm2cxcoshn2cxdxn1)
xsinhcxdx=1cxcoshcx1c2sinhcx
xcoshcxdx=1cxsinhcx1c2coshcx
tanhcxdx=1cln|coshcx|
cothcxdx=1cln|sinhcx|
tanhncxdx=1c(n1)tanhn1cx+tanhn2cxdxn1)
cothncxdx=1c(n1)cothn1cx+cothn2cxdxn1)
sinhbxsinhcxdx=1b2c2(bsinhcxcoshbxccoshcxsinhbx)b2c2)
coshbxcoshcxdx=1b2c2(bsinhbxcoshcxcsinhcxcoshbx)b2c2)
coshbxsinhcxdx=1b2c2(bsinhbxsinhcxccoshbxcoshcx)b2c2)
sinh(ax+b)sin(cx+d)dx=aa2+c2cosh(ax+b)sin(cx+d)ca2+c2sinh(ax+b)cos(cx+d)
sinh(ax+b)cos(cx+d)dx=aa2+c2cosh(ax+b)cos(cx+d)+ca2+c2sinh(ax+b)sin(cx+d)
cosh(ax+b)sin(cx+d)dx=aa2+c2sinh(ax+b)sin(cx+d)ca2+c2cosh(ax+b)cos(cx+d)
cosh(ax+b)cos(cx+d)dx=aa2+c2sinh(ax+b)cos(cx+d)+ca2+c2cosh(ax+b)sin(cx+d)

Tích Phân Hàm Số Hyperboly Ngược

Dưới đây là danh sách các tích phân với hàm hypebolic ngược.

arsinhxcdx=xarsinhxcx2+c2
arcoshxcdx=xarcoshxcx2c2
artanhxcdx=xartanhxc+c2ln|c2x2||x|<|c|)
arcothxcdx=xarcothxc+c2ln|x2c2||x|>|c|)
arsechxcdx=xarsechxccarctanxcxc+xxcx(0,c))
arcschxcdx=xarcschxc+clnx+x2+c2cx(0,c))

Tích phân hàm số Logarit

Dưới đây là danh sách tích phân với hàm lôgarít.

Chú ý: bài này quy ước x>0.

lncxdx=xlncxx
  • (lnx)2dx=x(lnx)22xlnx+2x
  • (lncx)ndx=x(lncx)nn(lncx)n1dx
  • dxlnx=ln|lnx|+lnx+i=2(lnx)iii!
  • dx(lnx)n=x(n1)(lnx)n1+1n1dx(lnx)n1n1)
  • xmlnxdx=xm+1(lnxm+11(m+1)2)m1)
  • xm(lnx)ndx=xm+1(lnx)nm+1nm+1xm(lnx)n1dxm1)
  • (lnx)ndxx=(lnx)n+1n+1n1)
  • lnxdxxm=lnx(m1)xm11(m1)2xm1m1)
  • (lnx)ndxxm=(lnx)n(m1)xm1+nm1(lnx)n1dxxmm1)
  • xmdx(lnx)n=xm+1(n1)(lnx)n1+m+1n1xmdx(lnx)n1n1)
  • dxxlnx=ln|lnx|
  • dxxnlnx=ln|lnx|+i=1(1)i(n1)i(lnx)iii!
  • dxx(lnx)n=1(n1)(lnx)n1n1)
  • sin(lnx)dx=x2(sin(lnx)cos(lnx))
  • cos(lnx)dx=x2(sin(lnx)+cos(lnx))

Tích phân hàm số mũ

Dưới đây là danh sách các tích phân với hàm mũ.

ecxdx=1cecx
acxdx=1clnaacxa>0, a1)
xecxdx=ecxc2(cx1)
x2ecxdx=ecx(x2c2xc2+2c3)
xnecxdx=1cxnecxncxn1ecxdx
ecxdxx=ln|x|+i=1(cx)iii!
ecxdxxn=1n1(ecxxn1+cecxxn1dx)n1)
ecxlnxdx=1cecxln|x|Ei(cx)
ecxsinbxdx=ecxc2+b2(csinbxbcosbx)
ecxcosbxdx=ecxc2+b2(ccosbx+bsinbx)
ecxsinnxdx=ecxsinn1xc2+n2(csinxncosx)+n(n1)c2+n2ecxsinn2xdx
ecxcosnxdx=ecxcosn1xc2+n2(ccosx+nsinx)+n(n1)c2+n2ecxcosn2xdx
xecx2dx=12cecx2
1σ2πe(xμ)2/2σ2dx=12σ(1+erfxμσ2)
ex2dx=ex2(j=0n1c2j1x2j+1)+(2n1)c2n2ex2x2ndx(n>0),
với c2j=135(2j1)2j+1=2j!j!22j+1 .
eax2dx=πa
0x2nex2/a2dx=π(2n)!n!(a2)2n+1

Tích phân hàm số lượng giác

Tích phân hàm số sine

sinaxdx=1acosax+C
sin2axdx=x214asin2ax+C=x212asinaxcosax+C
xsin2axdx=x24x4asin2ax18a2cos2ax+C
x2sin2axdx=x36(x24a18a3)sin2axx4a2cos2ax+C
sinb1xsinb2xdx=sin((b1b2)x)2(b1b2)sin((b1+b2)x)2(b1+b2)+C(for |b1||b2|)
sinnaxdx=sinn1axcosaxna+n1nsinn2axdx(for n>0)
dxsinax=1aln|tanax2|+C
dxsinnax=cosaxa(1n)sinn1ax+n2n1dxsinn2ax(for n>1)
xsinaxdx=sinaxa2xcosaxa+C
xnsinaxdx=xnacosax+naxn1cosaxdx(for n>0)
a2a2x2sin2nπxadx=a3(n2π26)24n2π2(for n=2,4,6...)
sinaxxdx=n=0(1)n(ax)2n+1(2n+1)(2n+1)!+C
sinaxxndx=sinax(n1)xn1+an1cosaxxn1dx
dx1±sinax=1atan(ax2π4)+C
xdx1+sinax=xatan(ax2π4)+2a2ln|cos(ax2π4)|+C
xdx1sinax=xacot(π4ax2)+2a2ln|sin(π4ax2)|+C
sinaxdx1±sinax=±x+1atan(π4ax2)+C
  • Tích phân bất định cosine
cosaxdx=1asinax+C
cosnaxdx=cosn1axsinaxna+n1ncosn2axdx(for n>0)
xcosaxdx=cosaxa2+xsinaxa+C
cos2axdx=x2+14asin2ax+C=x2+12asinaxcosax+C
x2cos2axdx=x36+(x24a18a3)sin2ax+x4a2cos2ax+C
xncosaxdx=xnsinaxanaxn1sinaxdx
cosaxxdx=ln|ax|+k=1(1)k(ax)2k2k(2k)!+C
cosaxxndx=cosax(n1)xn1an1sinaxxn1dx(for n1)
dxcosax=1aln|tan(ax2+π4)|+C
dxcosnax=sinaxa(n1)cosn1ax+n2n1dxcosn2ax(for n>1)
dx1+cosax=1atanax2+C
dx1cosax=1acotax2+C
xdx1+cosax=xatanax2+2a2ln|cosax2|+C
xdx1cosax=xacotax2+2a2ln|sinax2|+C
cosaxdx1+cosax=x1atanax2+C
cosaxdx1cosax=x1acotax2+C
cosa1xcosa2xdx=sin(a1a2)x2(a1a2)+sin(a1+a2)x2(a1+a2)+C(for |a1||a2|)
tanaxdx=1aln|cosax|+C=1aln|secax|+C
tannaxdx=1a(n1)tann1axtann2axdx(for n1)
dxqtanax+p=1p2+q2(px+qaln|qsinax+pcosax|)+C(for p2+q20)


dxtanax=1aln|sinax|+C
dxtanax+1=x2+12aln|sinax+cosax|+C
dxtanax1=x2+12aln|sinaxcosax|+C
tanaxdxtanax+1=x212aln|sinax+cosax|+C
tanaxdxtanax1=x2+12aln|sinaxcosax|+C
  • Tích phân bất địnhonly secant
secaxdx=1aln|secax+tanax|+C
secnaxdx=secn1axsinaxa(n1)+n2n1secn2axdx (for n1)
secnxdx=secn2xtanxn1+n2n1secn2xdx
dxsecx+1=xtanx2+C
cscaxdx=1aln|cscaxcotax|+C
csc2xdx=cotx+C
cscnaxdx=cscn1axcosaxa(n1)+n2n1cscn2axdx (for n1)
cotaxdx=1aln|sinax|+C
cotnaxdx=1a(n1)cotn1axcotn2axdx(for n1)
dx1+cotax=tanaxdxtanax+1
dx1cotax=tanaxdxtanax1
dxcosax±sinax=1a2ln|tan(ax2±π8)|+C
dx(cosax±sinax)2=12atan(axπ4)+C
dx(cosx+sinx)n=1n1(sinxcosx(cosx+sinx)n12(n2)dx(cosx+sinx)n2)
cosaxdxcosax+sinax=x2+12aln|sinax+cosax|+C
cosaxdxcosaxsinax=x212aln|sinaxcosax|+C
sinaxdxcosax+sinax=x212aln|sinax+cosax|+C
sinaxdxcosaxsinax=x212aln|sinaxcosax|+C
cosaxdxsinax(1+cosax)=14atan2ax2+12aln|tanax2|+C
cosaxdxsinax(1+cosax)=14acot2ax212aln|tanax2|+C
sinaxdxcosax(1+sinax)=14acot2(ax2+π4)+12aln|tan(ax2+π4)|+C
sinaxdxcosax(1sinax)=14atan2(ax2+π4)12aln|tan(ax2+π4)|+C
sinaxcosaxdx=12asin2ax+C
sina1xcosa2xdx=cos(a1+a2)x2(a1+a2)cos(a1a2)x2(a1a2)+C(for |a1||a2|)
sinnaxcosaxdx=1a(n+1)sinn+1ax+C(for n1)
sinaxcosnaxdx=1a(n+1)cosn+1ax+C(for n1)
sinnaxcosmaxdx=sinn1axcosm+1axa(n+m)+n1n+msinn2axcosmaxdx(for m,n>0)
also: sinnaxcosmaxdx=sinn+1axcosm1axa(n+m)+m1n+msinnaxcosm2axdx(for m,n>0)
dxsinaxcosax=1aln|tanax|+C
dxsinaxcosnax=1a(n1)cosn1ax+dxsinaxcosn2ax(for n1)
dxsinnaxcosax=1a(n1)sinn1ax+dxsinn2axcosax(for n1)
sinaxdxcosnax=1a(n1)cosn1ax+C(for n1)
sin2axdxcosax=1asinax+1aln|tan(π4+ax2)|+C
sin2axdxcosnax=sinaxa(n1)cosn1ax1n1dxcosn2ax(for n1)
sinnaxdxcosax=sinn1axa(n1)+sinn2axdxcosax(for n1)
sinnaxdxcosmax=sinn+1axa(m1)cosm1axnm+2m1sinnaxdxcosm2ax(for m1)
also: sinnaxdxcosmax=sinn1axa(nm)cosm1ax+n1nmsinn2axdxcosmax(for mn)
also: sinnaxdxcosmax=sinn1axa(m1)cosm1axn1m1sinn2axdxcosm2ax(for m1)
cosaxdxsinnax=1a(n1)sinn1ax+C(for n1)
cos2axdxsinax=1a(cosax+ln|tanax2|)+C
cos2axdxsinnax=1n1(cosaxasinn1ax)+dxsinn2ax)(for n1)
cosnaxdxsinmax=cosn+1axa(m1)sinm1axnm2m1cosnaxdxsinm2ax(for m1)
also: cosnaxdxsinmax=cosn1axa(nm)sinm1ax+n1nmcosn2axdxsinmax(for mn)
also: cosnaxdxsinmax=cosn1axa(m1)sinm1axn1m1cosn2axdxsinm2ax(for m1)
sinaxtanaxdx=1a(ln|secax+tanax|sinax)+C
tannaxdxsin2ax=1a(n1)tann1(ax)+C(for n1)
tannaxdxcos2ax=1a(n+1)tann+1ax+C(for n1)
cotnaxdxsin2ax=1a(n+1)cotn+1ax+C(for n1)
cotnaxdxcos2ax=1a(1n)tan1nax+C(for n1)
  • Tích phân bất định
ccsinxdx=0
cccosxdx=20ccosxdx=2c0cosxdx=2sinc
cctanxdx=0
a2a2x2cos2nπxadx=a3(n2π26)24n2π2(for n=1,3,5...)

Tích phân hàm lượng giác ngược

Dưới đây là danh sách các tích phân với hàm lượng giác ngược.

arcsinxcdx=xarcsinxc+c2x2
xarcsinxcdx=(x22c24)arcsinxc+x4c2x2
x2arcsinxcdx=x33arcsinxc+x2+2c29c2x2
xnsin1xdx=1n+1(xn+1sin1x
+xn1x2nxn1sin1xn1+nxn2sin1xdx)
arccosxcdx=xarccosxcc2x2
xarccosxcdx=(x22c24)arccosxcx4c2x2
x2arccosxcdx=x33arccosxcx2+2c29c2x2
arctanxcdx=xarctanxcc2ln(c2+x2)
xarctanxcdx=c2+x22arctanxccx2
x2arctanxcdx=x33arctanxccx26+c36lnc2+x2
xnarctanxcdx=xn+1n+1arctanxccn+1xn+1dxc2+x2n1)
arcsecxcdx=xarcsecxc+xc|x|ln|x±x21|
xarcsecxdx=12(x2arcsecxx21)
xnarcsecxdx=1n+1(xn+1arcsecx1n(xn1x21
+(1n)(xn1arcsecx+(1n)xn2arcsecxdx)))
arccotxcdx=xarccotxc+c2ln(c2+x2)
xarccotxcdx=c2+x22arccotxc+cx2
x2arccotxcdx=x33arccotxc+cx26c36ln(c2+x2)
xnarccotxcdx=xn+1n+1arccotxc+cn+1xn+1dxc2+x2n1)