Tích phân hàm số toán lủy thừa của cosecant

From testwiki
Jump to navigation Jump to search
cscaxdx=1aln|cscax+cotax|+C
csc2xdx=cotx+C
cscnaxdx=cscn1axcscaxa(n1)+n2n1cscn2axdx (for n1)
dxcscx+1=x2sinx2cosx2+sinx2+C
dxcscx1=2sinx2cosx2sinx2x+C


cotaxdx=1aln|sinax|+C
cotnaxdx=1a(n1)cotn1axcotn2axdx(for n1)
dx1+cotax=tanaxdxtanax+1
dx1cotax=tanaxdxtanax1


dxcosax±sinax=1a2ln|tan(ax2±π8)|+C
dx(cosax±sinax)2=12atan(axπ4)+C
dx(cosx+sinx)n=1n1(sinxcosx(cosx+sinx)n12(n2)dx(cosx+sinx)n2)
cosaxdxcosax+sinax=x2+12aln|sinax+cosax|+C
cosaxdxcosaxsinax=x212aln|sinaxcosax|+C
sinaxdxcosax+sinax=x212aln|sinax+cosax|+C
sinaxdxcosaxsinax=x212aln|sinaxcosax|+C
cosaxdxsinax(1+cosax)=14atan2ax2+12aln|tanax2|+C
cosaxdxsinax(1cosax)=14acot2ax212aln|tanax2|+C
sinaxdxcosax(1+sinax)=14acot2(ax2+π4)+12aln|tan(ax2+π4)|+C
sinaxdxcosax(1sinax)=14atan2(ax2+π4)12aln|tan(ax2+π4)|+C
sinaxcosaxdx=12acos2ax+C
sina1xcosa2xdx=cos((a1a2)x)2(a1a2)cos((a1+a2)x)2(a1+a2)+C(for |a1||a2|)
sinnaxcosaxdx=1a(n+1)sinn+1ax+C(for n1)
sinaxcosnaxdx=1a(n+1)cosn+1ax+C(for n1)
sinnaxcosmaxdx=sinn1axcosm+1axa(n+m)+n1n+msinn2axcosmaxdx(for m,n>0)
và: sinnaxcosmaxdx=sinn+1axcosm1axa(n+m)+m1n+msinnaxcosm2axdx(for m,n>0)
dxsinaxcosax=1aln|tanax|+C
dxsinaxcosnax=1a(n1)cosn1ax+dxsinaxcosn2ax(for n1)
dxsinnaxcosax=1a(n1)sinn1ax+dxsinn2axcosax(for n1)
sinaxdxcosnax=1a(n1)cosn1ax+C(for n1)
sin2axdxcosax=1asinax+1aln|tan(π4+ax2)|+C
sin2axdxcosnax=sinaxa(n1)cosn1ax1n1dxcosn2ax(for n1)
sinnaxdxcosax=sinn1axa(n1)+sinn2axdxcosax(for n1)
sinnaxdxcosmax=sinn+1axa(m1)cosm1axnm+2m1sinnaxdxcosm2ax(for m1)
và: sinnaxdxcosmax=sinn1axa(nm)cosm1ax+n1nmsinn2axdxcosmax(for mn)
và: sinnaxdxcosmax=sinn1axa(m1)cosm1axn1m1sinn2axdxcosm2ax(for m1)
cosaxdxsinnax=1a(n1)sinn1ax+C(for n1)
cos2axdxsinax=1a(cosax+ln|tanax2|)+C
cos2axdxsinnax=1n1(cosaxasinn1ax)+dxsinn2ax)(for n1)
cosnaxdxsinmax=cosn+1axa(m1)sinm1axnm2m1cosnaxdxsinm2ax(for m1)
và: cosnaxdxsinmax=cosn1axa(nm)sinm1ax+n1nmcosn2axdxsinmax(for mn)
và: cosnaxdxsinmax=cosn1axa(m1)sinm1axn1m1cosn2axdxsinm2ax(for m1)


sinaxtanaxdx=1a(ln|secax+tanax|sinax)+C
tannaxdxsin2ax=1a(n1)tann1(ax)+C(for n1)


tannaxdxcos2ax=1a(n+1)tann+1ax+C(for n1)
cotnaxdxsin2ax=1a(n+1)cotn+1ax+C(for n1)


cotnaxdxcos2ax=1a(1n)tan1nax+C(for n1)


arcsinxcdx=xarcsinxc+c2x2
xarcsinxcdx=(x22c24)arcsinxc+x4c2x2
x2arcsinxcdx=x33arcsinxc+x2+2c29c2x2
xnsin1xdx=1n+1(xn+1sin1x
+xn1x2nxn1sin1xn1+nxn2sin1xdx)
arccosxcdx=xarccosxcc2x2
xarccosxcdx=(x22c24)arccosxcx4c2x2
x2arccosxcdx=x33arccosxcx2+2c29c2x2
arctanxcdx=xarctanxcc2ln(c2+x2)
xarctanxcdx=c2+x22arctanxccx2
x2arctanxcdx=x33arctanxccx26+c36lnc2+x2
xnarctanxcdx=xn+1n+1arctanxccn+1xn+1dxc2+x2(n1)
arcsecxcdx=xarcsecxc+xc|x|ln|x±x21|
xarcsecxdx=12(x2arcsecxx21)
xnarcsecxdx=1n+1(xn+1arcsecx1n(xn1x21
+(1n)(xn1arcsecx+(1n)xn2arcsecxdx)))
arccotxcdx=xarccotxc+c2ln(c2+x2)
xarccotxcdx=c2+x22arccotxc+cx2
x2arccotxcdx=x33arccotxc+cx26c36ln(c2+x2)
xnarccotxcdx=xn+1n+1arccotxc+cn+1xn+1dxc2+x2(n1)


sinhcxdx=1ccoshcx
coshcxdx=1csinhcx
sinh2cxdx=14csinh2cxx2
cosh2cxdx=14csinh2cx+x2
sinhncxdx=1cnsinhn1cxcoshcxn1nsinhn2cxdx(n>0)
hay: sinhncxdx=1c(n+1)sinhn+1cxcoshcxn+2n+1sinhn+2cxdx(n<0n1)
coshncxdx=1cnsinhcxcoshn1cx+n1ncoshn2cxdx(n>0)
hay: coshncxdx=1c(n+1)sinhcxcoshn+1cxn+2n+1coshn+2cxdx(n<0n1)
dxsinhcx=1cln|tanhcx2|
hay: dxsinhcx=1cln|coshcx1sinhcx|
hay: dxsinhcx=1cln|sinhcxcoshcx+1|
hay: dxsinhcx=1cln|coshcx1coshcx+1|
dxcoshcx=2carctanecx
dxsinhncx=coshcxc(n1)sinhn1cxn2n1dxsinhn2cx(n1)
dxcoshncx=sinhcxc(n1)coshn1cx+n2n1dxcoshn2cx(n1)
coshncxsinhmcxdx=coshn1cxc(nm)sinhm1cx+n1nmcoshn2cxsinhmcxdx(mn)
hay: coshncxsinhmcxdx=coshn+1cxc(m1)sinhm1cx+nm+2m1coshncxsinhm2cxdx(m1)
hay: coshncxsinhmcxdx=coshn1cxc(m1)sinhm1cx+n1m1coshn2cxsinhm2cxdx(m1)
sinhmcxcoshncxdx=sinhm1cxc(mn)coshn1cx+m1mnsinhm2cxcoshncxdx(mn)
hay: sinhmcxcoshncxdx=sinhm+1cxc(n1)coshn1cx+mn+2n1sinhmcxcoshn2cxdx(n1)
hay: sinhmcxcoshncxdx=sinhm1cxc(n1)coshn1cx+m1n1sinhm2cxcoshn2cxdx(n1)
xsinhcxdx=1cxcoshcx1c2sinhcx
xcoshcxdx=1cxsinhcx1c2coshcx
tanhcxdx=1cln|coshcx|
cothcxdx=1cln|sinhcx|
tanhncxdx=1c(n1)tanhn1cx+tanhn2cxdx(n1)
cothncxdx=1c(n1)cothn1cx+cothn2cxdx(n1)
sinhbxsinhcxdx=1b2c2(bsinhcxcoshbxccoshcxsinhbx)(b2c2)
coshbxcoshcxdx=1b2c2(bsinhbxcoshcxcsinhcxcoshbx)(b2c2)
coshbxsinhcxdx=1b2c2(bsinhbxsinhcxccoshbxcoshcx)(b2c2)
sinh(ax+b)sin(cx+d)dx=aa2+c2cosh(ax+b)sin(cx+d)ca2+c2sinh(ax+b)cos(cx+d)
sinh(ax+b)cos(cx+d)dx=aa2+c2cosh(ax+b)cos(cx+d)+ca2+c2sinh(ax+b)sin(cx+d)
cosh(ax+b)sin(cx+d)dx=aa2+c2sinh(ax+b)sin(cx+d)ca2+c2cosh(ax+b)cos(cx+d)
cosh(ax+b)cos(cx+d)dx=aa2+c2sinh(ax+b)cos(cx+d)+ca2+c2cosh(ax+b)sin(cx+d)


arsinhxcdx=xarsinhxcx2+c2
arcoshxcdx=xarcoshxcx2c2
artanhxcdx=xartanhxc+c2ln|c2x2|(|x|<|c|)
arcothxcdx=xarcothxc+c2ln|x2c2|(|x|>|c|)
arsechxcdx=xarsechxccarctanxcxc+xxc(x(0,c))
arcschxcdx=xarcschxc+clnx+x2+c2c(x(0,c))
ecxdx=1cecx
acxdx=1clnaacx(a>0, a1)
xecxdx=ecxc2(cx1)
x2ecxdx=ecx(x2c2xc2+2c3)
xnecxdx=1cxnecxncxn1ecxdx
ecxdxx=ln|x|+i=1(cx)iii!
ecxdxxn=1n1(ecxxn1+cecxxn1dx)(n1)
ecxlnxdx=1cecxln|x|Ei(cx)
ecxsinbxdx=ecxc2+b2(csinbxbcosbx)
ecxcosbxdx=ecxc2+b2(ccosbx+bsinbx)
ecxsinnxdx=ecxsinn1xc2+n2(csinxncosx)+n(n1)c2+n2ecxsinn2xdx
ecxcosnxdx=ecxcosn1xc2+n2(ccosx+nsinx)+n(n1)c2+n2ecxcosn2xdx
xecx2dx=12cecx2
1σ2πe(xμ)2/2σ2dx=12σ(1+erfxμσ2)
ex2dx=ex2(j=0n1c2j1x2j+1)+(2n1)c2n2ex2x2ndx(n>0),
với c2j=135(2j1)2j+1=(2j)!j!22j+1 .
eax2dx=πa
0x2nex2/a2dx=π(2n)!n!(a2)2n+1
lncxdx=xlncxx
(lnx)2dx=x(lnx)22xlnx+2x
(lncx)ndx=x(lncx)nn(lncx)n1dx
dxlnx=ln|lnx|+lnx+i=2(lnx)iii!
dx(lnx)n=x(n1)(lnx)n1+1n1dx(lnx)n1(n1)
xmlnxdx=xm+1(lnxm+11(m+1)2)(m1)
xm(lnx)ndx=xm+1(lnx)nm+1nm+1xm(lnx)n1dx(m1)
(lnx)ndxx=(lnx)n+1n+1(n1)
lnxdxxm=lnx(m1)xm11(m1)2xm1(m1)
(lnx)ndxxm=(lnx)n(m1)xm1+nm1(lnx)n1dxxmm1)
xmdx(lnx)n=xm+1(n1)(lnx)n1+m+1n1xmdx(lnx)n1n1)
dxxlnx=ln|lnx|
dxxnlnx=ln|lnx|+i=1(1)i(n1)i(lnx)iii!
dxx(lnx)n=1(n1)(lnx)n1(n1)
sin(lnx)dx=x2(sin(lnx)cos(lnx))
cos(lnx)dx=x2(sin(lnx)+cos(lnx))


(ax+b)ndx=(ax+b)n+1a(n+1)(n1)
dxax+b=1aln|ax+b|
x(ax+b)ndx=a(n+1)xba2(n+1)(n+2)(ax+b)n+1(n∉{1,2})
xax+bdx=xaba2ln|ax+b|
x(ax+b)2dx=ba2(ax+b)+1a2ln|ax+b|
x(ax+b)ndx=a(1n)xba2(n1)(n2)(ax+b)n1(n∉{1,2})
x2ax+bdx=1a3((ax+b)222b(ax+b)+b2ln|ax+b|)
x2(ax+b)2dx=1a3(ax+b2bln|ax+b|b2ax+b)
x2(ax+b)3dx=1a3(ln|ax+b|+2bax+bb22(ax+b)2)
x2(ax+b)ndx=1a3(1(n3)(ax+b)n3+2b(n2)(a+b)n2b2(n1)(ax+b)n1)(n∉{1,2,3})
dxx(ax+b)=1bln|ax+bx|
dxx2(ax+b)=1bx+ab2ln|ax+bx|
dxx2(ax+b)2=a(1b2(ax+b)+1ab2x2b3ln|ax+bx|)
dxx2+a2=1aarctanxa
dxx2a2=1aarctanhxa=12alnaxa+x(|x|<|a|)
dxx2a2=1aarccothxa=12alnxax+a(|x|>|a|)
dxax2+bx+c=24acb2arctan2ax+b4acb2(4acb2>0)
dxax2+bx+c=2b24acartanh2ax+bb24ac=1b24acln|2ax+bb24ac2ax+b+b24ac|(4acb2<0)
dxax2+bx+c=22ax+b(4acb2=0)
xax2+bx+cdx=12aln|ax2+bx+c|b2adxax2+bx+c
mx+nax2+bx+cdx=m2aln|ax2+bx+c|+2anbma4acb2arctan2ax+b4acb2(4acb2>0)
mx+nax2+bx+cdx=m2aln|ax2+bx+c|+2anbmab24acartanh2ax+bb24ac(4acb2<0)
mx+nax2+bx+cdx=m2aln|ax2+bx+c|2anbma(2ax+b)(4acb2=0)
dx(ax2+bx+c)n=2ax+b(n1)(4acb2)(ax2+bx+c)n1+(2n3)2a(n1)(4acb2)dx(ax2+bx+c)n1
x(ax2+bx+c)ndx=bx+2c(n1)(4acb2)(ax2+bx+c)n1b(2n3)(n1)(4acb2)dx(ax2+bx+c)n1
dxx(ax2+bx+c)=12cln|x2ax2+bx+c|b2cdxax2+bx+c