Đạo hàm hàm số đặc biệt

From testwiki
Jump to navigation Jump to search
Đạo hàm hàm số đặc biệt Đạo hàm hàm số
Γ(x) 0tx1etlntdt
Γ(x) Γ(x)(n=1(ln(1+1n)1x+n)1x)=Γ(x)ψ(x)
ζ(x) n=1lnnnx=ln22xln33xln44x
ζ(x) p primepxlnp(1px)2q prime,qp11qx
Hàm số Đạo hàm bậc N

y=F(G(x))

dnydxn=n!{km}drdzrF(z)|z=G(x)m=1n1km!(1m!dmdxmG(x))km

where r=m=1nkm

and the set {km} consists of all non-negative integer solutions of the Diophantine equation m=1nmkm=n

See: Faà di Bruno's formula, Expansions for nearly Gaussian distributions by S. Blinnikov and R. Moessner


y=F(x)G(x)

dnydxn=k=0n(nk)dnkdxnkF(x)dkdxkG(x)

See: General Leibniz rule


y=xN

dnydxn=r=1n(Nr+1)xNn

y=[F(x)]r

dnydxn=r(nrn)j=0n(1)jrj(nj)[F(x)]rjdndxn[F(x)]j

y=BAx

dnydxn=AnBAx(lnB)n
For the case of B=exp(1)=e (the exponential function),

the above reduces to:

y=eAx


dnydxn=AneAx

y=ln[F(x)]

dnydxn=δnln[F(x)]+j=1n(1)j1j(nj)1[F(x)]jdndxn[F(x)]j

where δn={1n=00n0 is the Kronecker delta.


y=sin(Ax+B)

dnydxn=Ansin(Ax+B+nπ2)

Expanding this by the sine addition formula yields a more clear form to use:


dnydxn=An[cos(nπ2)sin(Ax+B)+sin(nπ2)cos(Ax+B)]


y=cos(Ax+B)

dnydxn=Ancos(Ax+B+nπ2)

Expanding by the cosine addition formula:

dnydxn=An[cos(nπ2)cos(Ax+B)sin(nπ2)sin(Ax+B)]

y=sinh(Ax+B) dnydxn=(iAn)sinh(Ax+B+inπ2)
y=cosh(Ax+B) dnydxn=(±iAn)cosh(Ax+Binπ2)