Tích phân hàm số toán lủy thừa e

From testwiki
Revision as of 00:34, 5 July 2020 by imported>JohnsonLee01 (Copying from Category:Tích phân to Category:VI using Cat-a-lot)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
ecxdx=1cecx
acxdx=1clnaacxa>0, a1)
xecxdx=ecxc2(cx1)
x2ecxdx=ecx(x2c2xc2+2c3)
xnecxdx=1cxnecxncxn1ecxdx
ecxdxx=ln|x|+i=1(cx)iii!
ecxdxxn=1n1(ecxxn1+cecxxn1dx)n1)
ecxlnxdx=1cecxln|x|Ei(cx)
ecxsinbxdx=ecxc2+b2(csinbxbcosbx)
ecxcosbxdx=ecxc2+b2(ccosbx+bsinbx)
ecxsinnxdx=ecxsinn1xc2+n2(csinxncosx)+n(n1)c2+n2ecxsinn2xdx
ecxcosnxdx=ecxcosn1xc2+n2(ccosx+nsinx)+n(n1)c2+n2ecxcosn2xdx
xecx2dx=12cecx2
1σ2πe(xμ)2/2σ2dx=12σ(1+erfxμσ2)
ex2dx=ex2(j=0n1c2j1x2j+1)+(2n1)c2n2ex2x2ndx(n>0),
với c2j=135(2j1)2j+1=2j!j!22j+1 .
eax2dx=πa
0x2nex2/a2dx=π(2n)!n!(a2)2n+1


sinhcxdx=1ccoshcx
coshcxdx=1csinhcx
sinh2cxdx=14csinh2cxx2
cosh2cxdx=14csinh2cx+x2
sinhncxdx=1cnsinhn1cxcoshcxn1nsinhn2cxdxn>0)
hay: sinhncxdx=1c(n+1)sinhn+1cxcoshcxn+2n+1sinhn+2cxdxn<0n1)
coshncxdx=1cnsinhcxcoshn1cx+n1ncoshn2cxdxn>0)
hay: coshncxdx=1c(n+1)sinhcxcoshn+1cxn+2n+1coshn+2cxdxn<0n1)
dxsinhcx=1cln|tanhcx2|
hay: dxsinhcx=1cln|coshcx1sinhcx|
hay: dxsinhcx=1cln|sinhcxcoshcx+1|
hay: dxsinhcx=1cln|coshcx1coshcx+1|
dxcoshcx=2carctanecx
dxsinhncx=coshcxc(n1)sinhn1cxn2n1dxsinhn2cxn1)
dxcoshncx=sinhcxc(n1)coshn1cx+n2n1dxcoshn2cxn1)
coshncxsinhmcxdx=coshn1cxc(nm)sinhm1cx+n1nmcoshn2cxsinhmcxdxmn)
hay: coshncxsinhmcxdx=coshn+1cxc(m1)sinhm1cx+nm+2m1coshncxsinhm2cxdxm1)
hay: coshncxsinhmcxdx=coshn1cxc(m1)sinhm1cx+n1m1coshn2cxsinhm2cxdxm1)
sinhmcxcoshncxdx=sinhm1cxc(mn)coshn1cx+m1mnsinhm2cxcoshncxdxmn)
hay: sinhmcxcoshncxdx=sinhm+1cxc(n1)coshn1cx+mn+2n1sinhmcxcoshn2cxdxn1)
hay: sinhmcxcoshncxdx=sinhm1cxc(n1)coshn1cx+m1n1sinhm2cxcoshn2cxdxn1)
xsinhcxdx=1cxcoshcx1c2sinhcx
xcoshcxdx=1cxsinhcx1c2coshcx
tanhcxdx=1cln|coshcx|
cothcxdx=1cln|sinhcx|
tanhncxdx=1c(n1)tanhn1cx+tanhn2cxdxn1)
cothncxdx=1c(n1)cothn1cx+cothn2cxdxn1)
sinhbxsinhcxdx=1b2c2(bsinhcxcoshbxccoshcxsinhbx)b2c2)
coshbxcoshcxdx=1b2c2(bsinhbxcoshcxcsinhcxcoshbx)b2c2)
coshbxsinhcxdx=1b2c2(bsinhbxsinhcxccoshbxcoshcx)b2c2)
sinh(ax+b)sin(cx+d)dx=aa2+c2cosh(ax+b)sin(cx+d)ca2+c2sinh(ax+b)cos(cx+d)
sinh(ax+b)cos(cx+d)dx=aa2+c2cosh(ax+b)cos(cx+d)+ca2+c2sinh(ax+b)sin(cx+d)
cosh(ax+b)sin(cx+d)dx=aa2+c2sinh(ax+b)sin(cx+d)ca2+c2cosh(ax+b)cos(cx+d)
cosh(ax+b)cos(cx+d)dx=aa2+c2sinh(ax+b)cos(cx+d)+ca2+c2cosh(ax+b)sin(cx+d)


Assume (x2>a2), for (x2<a2), see next section:

xsdx=13s3
sdxx=saarccos|ax|
dxs=dxx2a2=ln|x+sa|

Note that ln|x+sa|=sgn(x)arcosh|xa|=12ln(x+sxs), where the positive value of arcosh|xa| is to be taken.

xdxs=s
xdxs3=1s
xdxs5=13s3
xdxs7=15s5
xdxs2n+1=1(2n1)s2n1
x2mdxs2n+1=12n1x2m1s2n1+2m12n1x2m2dxs2n1
x2dxs=xs2+a22ln|x+sa|
x2dxs3=xs+ln|x+sa|
x4dxs=x3s4+38a2xs+38a4ln|x+sa|
x4dxs3=xs2a2xs+32a2ln|x+sa|
x4dxs5=xs13x3s3+ln|x+sa|
x2mdxs2n+1=(1)nm1a2(nm)i=0nm112(m+i)+1(nm1i)x2(m+i)+1s2(m+i)+1(n>m0)
dxs3=1a2xs
dxs5=1a4[xs13x3s3]
dxs7=1a6[xs23x3s3+15x5s5]
dxs9=1a8[xs33x3s3+35x5s517x7s7]
x2dxs5=1a2x33s3
x2dxs7=1a4[13x3s315x5s5]
x2dxs9=1a6[13x3s325x5s5+17x7s7]


udx=12(xu+a2arcsinxa)(|x||a|)
xudx=13u3(|x||a|)
x2udx=x4u3+a28(xu+a2arcsinxa)(|x||a|)
udxx=ualn|a+ux|(|x||a|)
dxu=arcsinxa(|x||a|)
x2dxu=12(xu+a2arcsinxa)(|x||a|)
udx=12(xusgnxarcosh|xa|)(for |x||a|)
xudx=u(|x||a|)

Tích phân hàm hợp (Integrals involving) R=ax2+bx+c

Assume (ax2 + bx + c) cannot be reduced to the following expression (px + q)2 for some p and q.

dxR=1aln|2aR+2ax+b|(for a>0)
dxR=1aarsinh2ax+b4acb2(for a>04acb2>0)
dxR=1aln|2ax+b|(for a>04acb2=0)
dxR=1aarcsin2ax+bb24ac(for a<04acb2<0|2ax+b|<b24ac)
dxR3=4ax+2b(4acb2)R
dxR5=4ax+2b3(4acb2)R(1R2+8a4acb2)
dxR2n+1=2(2n1)(4acb2)(2ax+bR2n1+4a(n1)dxR2n1)
xRdx=Rab2adxR
xR3dx=2bx+4c(4acb2)R
xR2n+1dx=1(2n1)aR2n1b2adxR2n+1
dxxR=1cln(2cR+bx+2cx)
dxxR=1carsinh(bx+2c|x|4acb2)
Sdx=2S33a
dxS=2Sa
dxxS={2barcoth(Sb)(for b>0,ax>0)2bartanh(Sb)(for b>0,ax<0)2barctan(Sb)(for b<0)
Sxdx={2(Sbarcoth(Sb))(for b>0,ax>0)2(Sbartanh(Sb))(for b>0,ax<0)2(Sbarctan(Sb))(for b<0)
xnSdx=2a(2n+1)(xnSbnxn1Sdx)
xnSdx=2a(2n+3)(xnS3nbxn1Sdx)
1xnSdx=1b(n1)(Sxn1+(n32)adxxn1S)


sinaxdx=1acosax+C
sin2axdx=x214asin2ax+C=x212asinaxcosax+C
sin3axdx=cos3ax12a3cosax4a+C
xsin2axdx=x24x4asin2ax18a2cos2ax+C
x2sin2axdx=x36(x24a18a3)sin2axx4a2cos2ax+C
sinb1xsinb2xdx=sin((b1b2)x)2(b1b2)sin((b1+b2)x)2(b1+b2)+C(for |b1||b2|)
sinnaxdx=sinn1axcosaxna+n1nsinn2axdx(for n>2)
dxsinax=1aln|tanax2|+C
dxsinnax=cosaxa(1n)sinn1ax+n2n1dxsinn2ax(for n>1)
xsinaxdx=sinaxa2xcosaxa+C
xnsinaxdx=xnacosax+naxn1cosaxdx=k=02kn(1)k+1xn2ka1+2kn!(n2k)!cosax+k=02k+1n(1)kxn12ka2+2kn!(n2k1)!sinax(for n>0)
a2a2x2sin2nπxadx=a3(n2π26)24n2π2(for n=2,4,6...)
sinaxxdx=n=0(1)n(ax)2n+1(2n+1)(2n+1)!+C
sinaxxndx=sinax(n1)xn1+an1cosaxxn1dx
dx1±sinax=1atan(ax2π4)+C
xdx1+sinax=xatan(ax2π4)+2a2ln|cos(ax2π4)|+C
xdx1sinax=xacot(π4ax2)+2a2ln|sin(π4ax2)|+C
sinaxdx1±sinax=±x+1atan(π4ax2)+C
cosaxdx=1asinax+C
cos2axdx=x2+14asin2ax+C=x2+12asinaxcosax+C
cosnaxdx=cosn1axsinaxna+n1ncosn2axdx(for n>0)
xcosaxdx=cosaxa2+xsinaxa+C
x2cos2axdx=x36+(x24a18a3)sin2ax+x4a2cos2ax+C
xncosaxdx=xnsinaxanaxn1sinaxdx=k=02k+1n(1)kxn2k1a2+2kn!(n2k1)!cosax+k=02kn(1)kxn2ka1+2kn!(n2k)!sinax
cosaxxdx=ln|ax|+k=1(1)k(ax)2k2k(2k)!+C
cosaxxndx=cosax(n1)xn1an1sinaxxn1dx(for n1)
dxcosax=1aln|tan(ax2+π4)|+C
dxcosnax=sinaxa(n1)cosn1ax+n2n1dxcosn2ax(for n>1)
dx1+cosax=1atanax2+C
dx1cosax=1acotax2+C
xdx1+cosax=xatanax2+2a2ln|cosax2|+C
xdx1cosax=xacotax2+2a2ln|sinax2|+C
cosaxdx1+cosax=x1atanax2+C
cosaxdx1cosax=x1acotax2+C
cosa1xcosa2xdx=sin(a1a2)x2(a1a2)+sin(a1+a2)x2(a1+a2)+C(for |a1||a2|)


tanaxdx=1aln|cosax|+C=1aln|secax|+C
tannaxdx=1a(n1)tann1axtann2axdx(for n1)
dxqtanax+p=1p2+q2(px+qaln|qsinax+pcosax|)+C(for p2+q20)
dxtanax+1=x2+12aln|sinax+cosax|+C
dxtanax1=x2+12aln|sinaxcosax|+C
tanaxdxtanax+1=x212aln|sinax+cosax|+C
tanaxdxtanax1=x2+12aln|sinaxcosax|+C


secaxdx=1aln|secax+tanax|+C
sec2xdx=tanx+C
secnaxdx=secn2axtanaxa(n1)+n2n1secn2axdx (for n1)
secnxdx=secn2xtanxn1+n2n1secn2xdx
dxsecx+1=xtanx2+C
dxsecx1=xcotx2+C