Tích phân hàm số toán cotangent

From testwiki
Revision as of 00:34, 5 July 2020 by imported>JohnsonLee01 (Copying from Category:Tích phân to Category:VI using Cat-a-lot)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
cotaxdx=1aln|sinax|+C
cotnaxdx=1a(n1)cotn1axcotn2axdx(for n1)
dx1+cotax=tanaxdxtanax+1
dx1cotax=tanaxdxtanax1


dxcosax±sinax=1a2ln|tan(ax2±π8)|+C
dx(cosax±sinax)2=12atan(axπ4)+C
dx(cosx+sinx)n=1n1(sinxcosx(cosx+sinx)n12(n2)dx(cosx+sinx)n2)
cosaxdxcosax+sinax=x2+12aln|sinax+cosax|+C
cosaxdxcosaxsinax=x212aln|sinaxcosax|+C
sinaxdxcosax+sinax=x212aln|sinax+cosax|+C
sinaxdxcosaxsinax=x212aln|sinaxcosax|+C
cosaxdxsinax(1+cosax)=14atan2ax2+12aln|tanax2|+C
cosaxdxsinax(1+cosax)=14acot2ax212aln|tanax2|+C
sinaxdxcosax(1+sinax)=14acot2(ax2+π4)+12aln|tan(ax2+π4)|+C
sinaxdxcosax(1sinax)=14atan2(ax2+π4)12aln|tan(ax2+π4)|+C
sinaxcosaxdx=12asin2ax+C
sina1xcosa2xdx=cos(a1+a2)x2(a1+a2)cos(a1a2)x2(a1a2)+C(for |a1||a2|)
sinnaxcosaxdx=1a(n+1)sinn+1ax+C(for n1)
sinaxcosnaxdx=1a(n+1)cosn+1ax+C(for n1)
sinnaxcosmaxdx=sinn1axcosm+1axa(n+m)+n1n+msinn2axcosmaxdx(for m,n>0)
also: sinnaxcosmaxdx=sinn+1axcosm1axa(n+m)+m1n+msinnaxcosm2axdx(for m,n>0)
dxsinaxcosax=1aln|tanax|+C
dxsinaxcosnax=1a(n1)cosn1ax+dxsinaxcosn2ax(for n1)
dxsinnaxcosax=1a(n1)sinn1ax+dxsinn2axcosax(for n1)
sinaxdxcosnax=1a(n1)cosn1ax+C(for n1)
sin2axdxcosax=1asinax+1aln|tan(π4+ax2)|+C
sin2axdxcosnax=sinaxa(n1)cosn1ax1n1dxcosn2ax(for n1)
sinnaxdxcosax=sinn1axa(n1)+sinn2axdxcosax(for n1)
sinnaxdxcosmax=sinn+1axa(m1)cosm1axnm+2m1sinnaxdxcosm2ax(for m1)
also: sinnaxdxcosmax=sinn1axa(nm)cosm1ax+n1nmsinn2axdxcosmax(for mn)
also: sinnaxdxcosmax=sinn1axa(m1)cosm1axn1m1sinn2axdxcosm2ax(for m1)
cosaxdxsinnax=1a(n1)sinn1ax+C(for n1)
cos2axdxsinax=1a(cosax+ln|tanax2|)+C
cos2axdxsinnax=1n1(cosaxasinn1ax)+dxsinn2ax)(for n1)
cosnaxdxsinmax=cosn+1axa(m1)sinm1axnm2m1cosnaxdxsinm2ax(for m1)
also: cosnaxdxsinmax=cosn1axa(nm)sinm1ax+n1nmcosn2axdxsinmax(for mn)
also: cosnaxdxsinmax=cosn1axa(m1)sinm1axn1m1cosn2axdxsinm2ax(for m1)


sinaxtanaxdx=1a(ln|secax+tanax|sinax)+C
tannaxdxsin2ax=1a(n1)tann1(ax)+C(for n1)


tannaxdxcos2ax=1a(n+1)tann+1ax+C(for n1)


cotnaxdxsin2ax=1a(n+1)cotn+1ax+C(for n1)


cotnaxdxcos2ax=1a(1n)tan1nax+C(for n1)


ccsinxdx=0
cccosxdx=20ccosxdx=2c0cosxdx=2sinc
cctanxdx=0
a2a2x2cos2nπxadx=a3(n2π26)24n2π2(for n=1,3,5...)


arcsinxcdx=xarcsinxc+c2x2
xarcsinxcdx=(x22c24)arcsinxc+x4c2x2
x2arcsinxcdx=x33arcsinxc+x2+2c29c2x2
xnsin1xdx=1n+1(xn+1sin1x
+xn1x2nxn1sin1xn1+nxn2sin1xdx)
arccosxcdx=xarccosxcc2x2
xarccosxcdx=(x22c24)arccosxcx4c2x2
x2arccosxcdx=x33arccosxcx2+2c29c2x2
arctanxcdx=xarctanxcc2ln(c2+x2)
xarctanxcdx=c2+x22arctanxccx2
x2arctanxcdx=x33arctanxccx26+c36lnc2+x2
xnarctanxcdx=xn+1n+1arctanxccn+1xn+1dxc2+x2n1)
arcsecxcdx=xarcsecxc+xc|x|ln|x±x21|
xarcsecxdx=12(x2arcsecxx21)
xnarcsecxdx=1n+1(xn+1arcsecx1n(xn1x21
+(1n)(xn1arcsecx+(1n)xn2arcsecxdx)))
arccotxcdx=xarccotxc+c2ln(c2+x2)
xarccotxcdx=c2+x22arccotxc+cx2
x2arccotxcdx=x33arccotxc+cx26c36ln(c2+x2)
xnarccotxcdx=xn+1n+1arccotxc+cn+1xn+1dxc2+x2n1)


(ax+b)ndx=(ax+b)n+1a(n+1)n1)
dxax+b=1aln|ax+b|
x(ax+b)ndx=a(n+1)xba2(n+1)(n+2)(ax+b)n+1n∉{1,2})
xax+bdx=xaba2ln|ax+b|
x(ax+b)2dx=ba2(ax+b)+1a2ln|ax+b|
x(ax+b)ndx=a(1n)xba2(n1)(n2)(ax+b)n1n∉{1,2})
x2ax+bdx=1a3((ax+b)222b(ax+b)+b2ln|ax+b|)
x2(ax+b)2dx=1a3(ax+b2bln|ax+b|b2ax+b)
x2(ax+b)3dx=1a3(ln|ax+b|+2bax+bb22(ax+b)2)
x2(ax+b)ndx=1a3(1(n3)(ax+b)n3+2b(n2)(a+b)n2b2(n1)(ax+b)n1)n∉{1,2,3})
dxx(ax+b)=1bln|ax+bx|
dxx2(ax+b)=1bx+ab2ln|ax+bx|
dxx2(ax+b)2=a(1b2(ax+b)+1ab2x2b3ln|ax+bx|)
dxx2+a2=1aarctanxa
dxx2a2=1aarctanhxa=12alnaxa+x|x|<|a|)
dxx2a2=1aarccothxa=12alnxax+a|x|>|a|)
dxax2+bx+c=24acb2arctan2ax+b4acb24acb2>0)
dxax2+bx+c=2b24acartanh2ax+bb24ac=1b24acln|2ax+bb24ac2ax+b+b24ac|4acb2<0)
dxax2+bx+c=22ax+b4acb2=0)
xax2+bx+cdx=12aln|ax2+bx+c|b2adxax2+bx+c
mx+nax2+bx+cdx=m2aln|ax2+bx+c|+2anbma4acb2arctan2ax+b4acb24acb2>0)
mx+nax2+bx+cdx=m2aln|ax2+bx+c|+2anbmab24acartanh2ax+bb24ac4acb2<0)
mx+nax2+bx+cdx=m2aln|ax2+bx+c|2anbma(2ax+b)4acb2=0)
dx(ax2+bx+c)n=2ax+b(n1)(4acb2)(ax2+bx+c)n1+(2n3)2a(n1)(4acb2)dx(ax2+bx+c)n1
x(ax2+bx+c)ndx=bx+2c(n1)(4acb2)(ax2+bx+c)n1b(2n3)(n1)(4acb2)dx(ax2+bx+c)n1
dxx(ax2+bx+c)=12cln|x2ax2+bx+c|b2cdxax2+bx+c


rdx=12(xr+a2ln(x+r))
r3dx=14xr3+38a2xr+38a4ln(x+r)
r5dx=16xr5+524a2xr3+516a4xr+516a6ln(x+r)
xrdx=r33
xr3dx=r55
xr2n+1dx=r2n+32n+3
x2rdx=xr34a2xr8a48ln(x+r)
x2r3dx=xr56a2xr324a4xr16a616ln(x+r)
x3rdx=r55a2r33
x3r3dx=r77a2r55
x3r2n+1dx=r2n+52n+5a3r2n+32n+3
x4rdx=x3r36a2xr38+a4xr16+a616ln(x+r)
x4r3dx=x3r58a2xr516+a4xr364+3a6xr128+3a8128ln(x+r)
x5rdx=r772a2r55+a4r33
x5r3dx=r992a2r77+a4r55
x5r2n+1dx=r2n+72n+72a2r2n+52n+5+a4r2n+32n+3
rdxx=raln|a+rx|=raarsinhax
r3dxx=r33+a2ra3ln|a+rx|
r5dxx=r55+a2r33+a4ra5ln|a+rx|
r7dxx=r77+a2r55+a4r33+a6ra7ln|a+rx|
dxr=arsinhxa=ln(x+ra)
dxr3=xa2r
xdxr=r
xdxr3=1r
x2dxr=x2ra22arsinhxa=x2ra22ln(x+ra)
dxxr=1aarsinhax=1aln|a+rx|